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a b s t r a c t

Analytical expressions are found for the coupled wavenumbers in an infinite fluid-filled

cylindrical shell using the asymptotic methods. These expressions are valid for any

general circumferential order (n). The shallow shell theory (which is more accurate at

higher frequencies) is used to model the cylinder. Initially, the in vacuo shell is dealt

and the low-frequency regimes. Next, the fluid-filled shell is considered. Defining a

relevant fluid-loading parameter m, we find solutions for the limiting cases of small and

large m. Wherever relevant, a frequency scaling parameter along with some ingenuity is

used to arrive at an elegant asymptotic expression. In all cases, Poisson’s ratio n is used

as an expansion variable. The asymptotic results are compared with numerical solutions

of the dispersion equation and the dispersion relation obtained by using the more

general Donnell–Mushtari shell theory (in vacuo and fluid-filled). A good match is

obtained. Hence, the contribution of this work lies in the extension of the existing

literature to include arbitrary circumferential orders (n).

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The study of dispersion curves in in vacuo and fluid-filled cylindrical shells has been carried out by many researchers in
the past. Some of the most widely cited works are by Fuller [1], Fuller and Fahy [2] and by Pavic [3]. More recent works
include those by Muggleton et al. [4] who have studied wave propagation in in vacuo shells experimentally and Maess et al.
[5] who use a finite-element formulation to find dispersion curves in a fluid-filled circular cylindrical shell. Xu and Zhang
[6] also present the dispersion curves for fluid-filled cylindrical shells via a numerical approach.

A detailed study using asymptotic methods on the effect of fluid-loading on elastic structures such as plates has been
carried out by Crighton [7–10]. In recent literature, a few asymptotic studies on nonlinear structural acoustic systems have
been presented by Sorokin [11–14] where techniques such as the method of multiple scales and matched asymptotic
expansions were used to study the effect of fluid-loading on nonlinear elastic structures. Studies on structural acoustic
waveguides have been recently presented by Sarkar and Sonti using the asymptotic methods [15–17].

In Sarkar and Sonti’s work, the coupled dispersion equation was expressed as the in vacuo structural dispersion
equation with a correction term due to the fluid. Then a perturbed solution to the structural wavenumber was found
around the in vacuo solution, from which physical inferences could then be drawn with ease. A similar approach was used
for the acoustical wavenumber also with a correction term due to the flexible structure. The analytical expression directly
gave the shift in the uncoupled wavenumber due to coupling. Thus, one could understand the wavenumber shift as being
ll rights reserved.
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due to a stiffness-like or an inertia-like effect of the structure/fluid on the fluid/structure, respectively. The Donnell–
Mushtari (DM) theory was used to model the shell dynamics. Due to the complexity of the DM equations, it was easier to
find solutions for a specific value of the circumferential order n and hence, the axisymmetric mode (n=0) and the beam
mode (n=1) were dealt with separately. The axisymmetric mode is the simplest mode due to the decoupling of the
torsional vibrations from the vibrations in the other two directions. The n=1 mode is the lowest-order mode for which the
vibrations in all the three directions are coupled.

In this article, using matched asymptotic expansions (MAE) [18] we present general analytical expressions for the
wavenumbers of any circumferential order in circular cylindrical shells (in vacuo and fluid-filled) based on the shallow
shell theory (SST). The SST is known to be more accurate in the higher frequency range considering the assumptions made
in its derivation [19]. Results exactly comparable with Heckl [20] and Fahy [21] for cylindrical shell dispersion relations
have been presented by Sarkar and Sonti [22] using the SST. According to published literature, the accuracy of the SST is
acceptable for the circumferential order nZ2. In this paper also we confine n to this range, i.e., nZ2. In the initial part of
the paper, we deal with the in vacuo cylindrical shell where the wavenumber expressions for a general circumferential
order are presented using high-frequency and low-frequency asymptotics. The asymptotic expansions involve the scaling
parameter and Poisson’s ratio. Then a fluid-filled infinite cylindrical shell is studied and the expressions for the coupled
dispersion curves are presented. We confine our interest to the real wavenumbers. The increased simplicity in the form of
the SST equations allows one to find analytical expressions for a general value of n. This is the principal contribution of this
paper. Thus, the circumferential mode number n now appears as a parameter in our expansions along with m (the fluid
loading parameter) and n (Poisson’s ratio). For the in vacuo case, the accuracy of the expansions is checked against the
direct numerical solutions of the dispersion equation from the SST and also against the numerical results from the DM
theory, which is one of the commonly accepted thin shell theories [1–3]. For the fluid-filled cases, the asymptotic
expansions are validated for their accuracy by comparing with the numerical results of the coupled dispersion equation
and the calculations based on the fluid-filled shell equations derived using the DM shell theory. Finally, the universal
constant-frequency loci for the coupled case are superposed on top of the in vacuo loci to gain additional insights.

We do mention here that we have used a regular perturbation method in every case studied in the paper. The matching
of the solutions in the intermediate frequency zones is left out to keep the article length within limits. And there is no
further insight to be gained by their inclusion. So, for the present work, MAE reduces to a set of regular perturbation
solutions obtained in different frequency bands. We do call our method as MAE since it strictly falls in the context of MAE,
and because the separate expansions can be matched.

We begin by deriving expressions for the uncoupled acoustic and structural wavenumbers.
2. Uncoupled analysis

2.1. Uncoupled acoustic wavenumbers

The solution to the wave equation for a wave travelling in the positive x-direction in a circular cylindrical duct (see
Fig. 1) is as shown [23]

pðr,y,x,tÞ ¼ PJnðksrÞcosðnyÞeiðot�kxxÞ, (1)
To 
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Fig. 1. Schematic of the infinite fluid-filled flexible cylindrical shell.
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where P is the amplitude and Jn( ) is the n th-order Bessel function of the first kind. ks and kx are the radial and the axial
wavenumbers, respectively. Note, k2

s þk2
x ¼ k2 ¼ ðo=cf Þ

2 where k is the acoustic wavenumber and cf is the speed of sound in
the fluid.

Based on the boundary condition at the duct wall, r = a, the solutions for the wavenumbers are given by

JnuðksaÞ ¼ 0 for a rigid�walled cylindrical duct and

JnðksaÞ ¼ 0 for a pressure� release cylindrical duct: (2)

Solving the above equations, one gets the uncoupled rigid-duct and pressure-release wavenumbers (kx). In the presence of
a flexible structural boundary, we expect the coupled wavenumbers to be perturbations on these solutions. The
intersection of these wavenumbers with the in vacuo bending wavenumber of the same circumferential order gives the
respective coincidence frequencies, denoted as rigid-duct (RD) coincidences and pressure-release (PR) coincidences.

2.2. Uncoupled structural wavenumber

2.2.1. The SST

The shallow-shell theory, also referred to as the Donnell–Mushtari–Vlasov theory in the literature, is a simplification of
the more general thin shell theories [19]. We briefly list the basic steps involved in the derivation of the thin shell
equations here to highlight the differences of the SST from the thin shell theories. The basic steps are as follows:
1.
 Derivation of the equilibrium equations in terms of the forces and moments.

2.
 Application of the Love–Kirchoff Hypothesis to simplify these relations.

3.
 Calculation of force and moment resultants in terms of the stress components as integrals.

4.
 Substitution of the stress–strain constitutive relations in the force–momentum resultants.

5.
 Substitution of the strain–displacement relations into the stress–strain relations.

6.
 Integration of the force-stress and moment-stress relations after substituting the relations from the steps 4 and 5.

7.
 The assumptions made in selectively neglecting certain terms and keeping the others while performing the integrations

are the main reason for the differing accuracies of different thin shell theories.

The SST differs from the thin shell theories in the following way:
1.
 Once the strains have been separated out into the membrane and bending components, the contributions of in-plane
deflections are neglected in the bending strain expressions but not in the membrane strain expressions.
2.
 Secondly, the influence of inertia in the in-plane direction is neglected.

3.
 Finally, following the Love–Kirchoff Hypothesis in the thin shell case, the shear deflection and hence, shear strains,

which are produced due to the shear stresses are assumed to be negligible and are dropped from subsequent analysis.
However, the shear stresses themselves are significant and are used to calculate the force resultants. Here, even the
shear stresses are assumed to be negligible, putting the shear force terms to zero.
4.
 The solution is carried out using an Airy-stress-function approach by which the equations of motion in the axial and
circumferential directions are automatically satisfied by the choice of an appropriate stress function. Thus, from the
equation of motion in the radial direction and the compatibility condition [24], we now have two equations in the two
unknowns, radial displacement and the stress function as shown in the following section. In the case of the thin shell
equations, we have three equations in the three displacement components.

As a result, the theory is limited to cases in which the above assumptions are valid, such as in shells with only a normal
loading applied. Traditionally, this model was found to work well for shells with small curvatures though this is an
‘unnecessarily strict restriction’ [19].

2.2.2. The in vacuo dispersion relation and numerical solution

The following derivation has already been presented in [22]. We reproduce the steps here for completeness before
presenting the equation for the fluid-filled shell. The shallow shell differential equations for the free vibrations of circular
cylindrical shells are given by (see [19, Sections 6.7–6.9])

Dr4wþr2
Rf¼ qn,

r4f�Ehr2
Rw¼ 0: (3)

Eliminating f we get

Dr8wðy,xÞþEhr4
Rwðy,xÞ ¼ rsho

2r
4wðy,xÞ: (4)
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In the above equation, w is the radial displacement of the cylindrical shell, h is the shell thickness, o is the circular
frequency, rs, E and n are the density, Young’s modulus of elasticity and Poisson’s ratio of the shell material, respectively.
The parameter D is the flexural rigidity given by D¼ Eh3=½12ð1�n2Þ�.

Note, r2, the Laplacian operator, and r4
R for a circular cylindrical shell are given by

r
2w¼

1

a2

q2w

qy2
þ

q2w

qx2
, r4

Rw¼
1

a2

q4w

qx4
ðsee ½19; Eq: ð6:9:2Þ�Þ,

where a is the radius of the circular cylindrical shell.
Substituting the above operators in Eq. (4) and assuming a solution for w of the form wðy,xÞ ¼WcosðnyÞe�ikxx where kx is

the bending wavenumber associated with the wave propagating in the axial direction, we get

1

ð1�n2Þ
½ðn

ffiffiffi
b

p
Þ
2
þðk

ffiffiffi
b

p
Þ
2
�2þ

ðk
ffiffiffi
b

p
Þ
4

½ðn
ffiffiffi
b

p
Þ
2
þðk

ffiffiffi
b

p
Þ
2
�2
¼O2: (5)

Here, k is the non-dimensional wavenumber given by k¼ kxa and b is the non-dimensional thickness parameter given by
b¼ h=ða

ffiffiffiffiffiffi
12
p
Þ. O is the non-dimensional frequency given by O¼oa=cL where cL ¼

ffiffiffiffiffiffiffiffiffiffi
E=rs

p
is the extensional wave speed.

But for the ð1�n2Þ term, Eq. (5) is identical to Eq. (2.114) or Eq. (4.167) in [21] (original derivation in [20]). The effect of this
term can be quantified for practical values of n using the asymptotic expressions for the wavenumbers as will be shown
later. Further, this relation holds for all n. This relation will be used in the analysis of the uncoupled structural
wavenumbers.

In the following sections, we use the technique of matched asymptotic expansions (MAE) [18] to present asymptotic
solutions to the above equation and compare them with the numerical solutions of the same. In the general application of
this technique, a different scaling of terms is used in different regimes of the independent variable (O in our case) and
using this, different solutions are obtained in each of these regions. The solutions are then patched together by an
appropriate expansion for intermediate values of the independent variable. In this paper, we obtain separate expansions
for the high- and low-frequency regimes and verify their accuracy against the commonly used DM theory. However, we do
not find separate expansions in the intermediate frequency range.
2.2.3. Asymptotic solution—high frequency

Here, the first step is to rescale the variables so that the region of interest shifts towards the high frequency. This is done
by employing the following transformation [16]:

O¼
Ors

e ,

k¼ krsffiffiffi
e
p , (6)

where Ors and krs are the rescaled variables, both of Oð1Þmagnitude. e is a fictitious parameter of a small magnitude and is
used to rescale the variables. e is also used as an expansion parameter in the MAE solution. Additionally, it serves as an
initial check with regard to the correctness of the asymptotic expansion obtained as e must disappear in the final
expression since it is an artificially introduced parameter. The rescaling used above in Eq. (6) is arrived at from
understanding the physics since, at higher frequencies, the in vacuo shell behaves like a plate when the radius of curvature
is much larger than the wavelength. Thus, we take the flexural wavenumber kp

ffiffiffiffi
O
p

which suggests the above
transformation. However, to do it rigorously, the correct rescaling transformation should be obtained by choosing the
powers of e as variables in the asymptotic expansion, substituting this expansion in the equation and balancing the powers
of e in the dominant terms after rescaling [18].

We substitute the transformation given in Eq. (6) into the dispersion relation (Eq. (5)). To find the solution for krs, we
use krs ¼ k0þea1þn2b1 in the rescaled dispersion relation and perform a double series expansion about e¼ 0 and n¼ 0.
The choice of the n2 term in the expansion is made after having tried expansions with a linear term in n term and having
found its coefficient to be zero. These are standard steps in the procedure to solve problems using asymptotic methods
[18]. Solving at each order of e and n2 and retaining only the first-order corrections, we get the following asymptotic
expression:

krs ¼

ffiffiffiffiffiffiffi
Ors

b

s
�e1

2
n2

ffiffiffiffiffiffiffi
b
Ors

s
�

1

4
n2

ffiffiffiffiffiffiffi
Ors

b

s
: (7)

This in the original variables k and O is given by

k¼

ffiffiffiffi
O
b

s
�

1

2
n2

ffiffiffiffi
b
O

r
�

1

4
n2

ffiffiffiffi
O
b

s
: (8)
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2.2.4. Asymptotic solution—low frequency

In the low frequency region, we again follow a similar approach as before, i.e., rescale the equation with an artificial
parameter ðeÞ. Thus, the transformation employed is as follows:

b¼ eb,

O¼Orse,

k¼ krs

ffiffiffi
e
p
: (9)

The additional transformation equation for b is necessary as in the low-frequency range, the assumption that the shell is
thin is especially important and needs to be invoked explicitly by setting b to be of OðeÞ. The other two relations are
obtained as earlier by using an order-balancing argument.

The perturbed wavenumber is obtained as follows:

krs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n4b2þO2

rs
4

q
n�e1

2

nð�O2
rsþ2n4b2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n4b2þO2

rs
4

q �n2 1

4

b2n5

ð�n4b2þO2
rsÞ

3=4
: (10)

Rescaling back to the original variables, the final equation is

k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n4b2

þO24

q
n�

1

2

nð�O2
þ2n4b2

Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n4b2

þO24

q �n2 1

4

b2n5

ð�n4b2
þO2
Þ
3=4

: (11)

The comparison of the asymptotic and the numerical solutions of Eq. (5) is shown in Fig. 2. Also shown in the figure are
the dispersion curves obtained from the numerical solution of the DM theory [25]. These dispersion curves have been
presented for a shell with h/a=0.05, i.e., b¼ h=ða

ffiffiffiffiffiffi
12
p
Þ¼ 0:0144.

2.3. Validity of the asymptotic series

In this section, we study the validity of the above expansions following the standard procedure in Hinch [18] and
Nayfeh [26].

2.3.1. High-frequency expansion

Restating Eq. (8) here for clarity, the asymptotic expansion for the high-frequency in vacuo structural wavenumber is
given by

k¼

ffiffiffiffi
O
b

s
�

1

2

n2ffiffiffiffi
O
b

s �n2 1

4

ffiffiffiffi
O
b

s
: (12)
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Fig. 2. Dispersion curves for in vacuo shell—comparison of high- and low-frequency asymptotic solutions (Eqs. (8) and (11)) with the numerical solution

for the SST and the DM theory—b¼ 0:0144, n¼ 0:3, (a) n=2, (b) n=5, (c) n=10.
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To study the validity of the above series, it is re-written as follows:

k¼

ffiffiffiffi
O
b

s
1�

1

2

n2

O
b

� ��n2 1

4

2
664

3
775: (13)

Looking at the terms in the square-brackets it can be seen that the coefficient of n2, viz., 0.25, is constant and is much lesser
than Oð1=n2Þ. Being a constant it stays bounded for all values of n and O and never causes the expansion to become invalid.
For the correction term corresponding to e, we have

n2

O
b

� �5Oð1Þ:

Thus, for a given n, as one goes higher in frequency and the shell becomes thinner, the expansion becomes more accurate.

2.3.2. Low-frequency expansion

Again, restating Eq. (11) here for clarity, the asymptotic expansion for the low-frequency in vacuo structural
wavenumber is given by

k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n4b2

þO24

q
n�

1

2

nð�O2
þ2n4b2

Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n4b2

þO24

q �n2 1

4

b2n5

ð�n4b2
þO2
Þ
3=4

, (14)

which is rewritten as follows:

k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n4b2

þO24

q
n 1�

1

2

ð�O2
þ2n4b2

Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n4b2

þO2
q �n2 1

4

b2n4

ð�n4b2
þO2
Þ

2
64

3
75: (15)

Thus, observing the leading-order term, for the wavenumber to be real, O4n2b. From the next term, we have

ð�O2
þ2n4b2

Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n4b2

þO2
q 5Oð1Þ:

Finally, from the coefficient of the n2 term,

b2n4

ð�n4b2
þO2
Þ
5O 1

n2

� �
:

Thus, the region of validity of the low-frequency expansion is given by the intersection of the regions of validity given by
the above inequalities.

2.4. Insights into results from in vacuo expansions

From the nature of expansions and Fig. 2, we draw some inferences.
1.
 In the high frequency expansion (Eq. (8)), the linear term in n is absent. The first non-zero correction is second
order in n.
2.
 The coefficient of n2 being constant, it never causes the expansion to become invalid.

3.
 In the high-frequency expansion, the correction term corresponding to e is proportional to n2O�1=2. For a very high

frequency for a given n, the correction term being proportional to O�1=2 tends to zero, i.e., the behaviour approaches
that of a true plate. For n values where the correction term n2O�1=2 is small, we expect the curves for these n to stack up
very close to each other, since the leading-order term is independent of n. This is also seen in the numerical solutions.
4.
 From the low frequency expansion, it is seen that the wavenumber k becomes real when O4n2b. On the other hand,
solving the governing equation (Eq. (5)) gives O¼ n2b=ð1�n2Þ as the exact cut-on frequency. Using a binomial
expansion it can be seen that the approximate value as predicted by the asymptotic expansion differs from the exact
value by Oðn2Þ which is an acceptable degree of error.
5.
 Also from the second term in the rewritten low-frequency in vacuo structural wavenumber, it can be seen that for a
given n, the term is proportional to O and hence its accuracy also decreases with O.
6.
 In general, as seen from Fig. 2, the expansions match well with the numerical solutions and with the DM theory. This
validates the use of the SST and asymptotic methods.

The numerical solutions here have been obtained by using a numerical implementation of the established continuation
technique. Here, an initial guess is made for one point on the solution curve. A MATLAB root-finding routine is invoked to
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find a solution point using this initial guess as an initial condition. We then march ahead in frequency and the previous
solution point is used as an initial condition for the next point on the solution curve and so on. In our implementation,
since the high-frequency behaviour is known, we make an initial guess for the point corresponding to the highest
frequency that we seek a solution for. On the basis of this, the initial value chosen is kguess ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Omax=b

p
where Omax is the

maximum value of O for which the solution is sought. We then march backward in frequency, in this case towards zero, to
get the complete dispersion curve.
3. Fluid-filled shell

3.1. Coupled dispersion equation

In this section, the fluid-filled shallow-shell model is considered. We start with the structural equation with an
additional loading term from the acoustic pressure, briefly described below.

As shown in Eq. (1), the solution to the wave-equation in cylindrical coordinates is

pðr,y,x,tÞ ¼ PJnðksrÞcosðnyÞeiðot�kxxÞ,

where k2
s þk2

x ¼o2=c2
f , Jn( ) is the nth-order Bessel function of the first kind.

Imposing the velocity continuity condition at r=a using Euler’s equation we get

o2rf w¼
qp

qr

����
r ¼ a

: (16)

Substituting wðy,x,tÞ ¼WcosðnyÞeiðot�kxxÞ (see Section 2) and simplifying, we get

P¼
o2rf

ksJnuðksaÞ
W ,

where W is the amplitude of the radial displacement and rf is the fluid density.
The basic shell equations according to the shallow shell theory have been presented in Eq. (3) [19,27]. For the coupled

case, the internal acoustic fluid introduces an additional term acting on the shell surface in the form of the acoustic
pressure. Therefore, substituting for qn and eliminating f, the equation is as follows:

Dr8wþEhr4
Rw¼ rsho

2r
4wþr4p,

Dr8wþEhr4
Rw¼ rsho

2r
4wþ

o4

c4
f

p,

where

r4p¼r2
ðr2pÞ ¼�

o2

c2
f

�
o2

c2
f

p

 !
¼
o4

c4
f

p (17)

and all the symbols are as defined in Section 2. Substituting for p and w, cancelling the common terms and simplifying,
we get

D
n2

a2
þk2

x

� �4

þEh
k4

x

a2
¼ rsho

2 n2

a2
þk2

x

� �2

þ
o4

c4
f

o2rf

ksJnuðksaÞ
JnðksaÞ: (18)

Introducing the following non-dimensional parameters k¼ kxa, O¼oa=cL, c=cL/cf, z¼ ksa¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2c2�k2

p
and

m¼ rf a=rsh which is the fluid-loading parameter, we get the coupled dispersion equation as follows [27]:

b2

1�n2
ðn2þk2Þ

4
þk4�O2

ðn2þk2Þ
2
�O6c4m JnðzÞ

zJnuðzÞ

� �
¼ 0: (19)

The last term involving m is the coupling term and can be used to classify the kind of loading as mass-like or stiffness-like
based on its sign. The fluid-loading parameter m is a measure of the ratio of the mass per unit area of the fluid to the mass
per unit area of the shell. In the following analysis, we find asymptotic solutions in the limit that m¼ 0 or m¼1, i.e., m and
1=m are used as the asymptotic expansion variables, respectively.

In the expansion for the coupled structural wavenumber, a rescaling parameter is used again along with Poisson’s ratio.
It will be shown through calculations that the coupled fluid wavenumbers (the RD and the PR) do not depend on Poisson’s
ratio ðnÞ at Oðn2Þ. In all the cases, the expansion is compared with the numerical solution and the fluid-filled shell curves
derived using the Donnell–Mushtari (DM) theory, denoted as DM(ff) theory, where ‘ff’ stands for ‘fluid-filled’.
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3.2. Limiting solutions

Eq. (19) is rewritten as

b2

1�n2
ðn2þk2Þ

4
þk4�O2

ðn2þk2Þ
2

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S

z|{z}
PW

JnuðzÞ|ffl{zffl}
R

�O6c4mJnðzÞ ¼ 0: (20)

We set m¼ 0 and obtain the following limiting solutions; S=0 is the uncoupled structural solution and is identical to Eq. (5)
obtained earlier, PW=0 is the plane-wave solution (not discussed) and R=0 is the uncoupled acoustic rigid-duct cut-on
solution (first equation in Eq. (2)). Thus, for m51, the asymptotic solutions for the coupled wavenumbers will be
perturbations to these solutions. Alternatively, setting m¼ 1=Z and rewriting the original equation, we have

b2

1�n2
ðn2þk2Þ

4
þk4�O2

ðn2þk2Þ
2

" #
zJnuðzÞZ�O6c4 JnðzÞ|ffl{zffl}

PR

¼ 0: (21)

Setting Z¼ 0 which is the limiting case corresponding to m¼1, we get PR=0 which is the uncoupled acoustic pressure-
release cut-on solution (second equation in Eq. (2)).

Referring to the schematic (Fig. 3), S=0 gives the in vacuo structural wavenumber, R=0 is defined here as the ‘uncoupled
acoustic rigid-duct (RD) cut-on wavenumber’ and referred to subsequently as such. Similarly, PR=0 is defined here as the
‘uncoupled acoustic pressure-release (PR) cut-on wavenumber’.

3.3. Asymptotic results—coupled case

3.3.1. Case I: small m
Here, we present the coupled wavenumbers for the small-m case, i.e., where the fluid is much lighter than the structure.

For convenience, Fig. 4 shows the schematic of the coupled wavenumbers that will be presented in this section. This figure
will be referred to in the write-up below. One should note that the uncoupled structural wavenumber intersects with the
uncoupled RD cut-ons and the uncoupled PR cut-ons. These intersections are denoted as the RD coincidences and the PR
coincidences, respectively, as shown in Fig. 3.

As discussed earlier, the two solutions obtained for the small-m case are the perturbations on the uncoupled RD cut-on
wavenumber (R=0) and the perturbation on the in vacuo structural wavenumber (S=0), respectively. As will be shown
from the derived asymptotic solutions, both these coupled solutions become invalid around the RD coincidence frequency.
However, the coupled structural wavenumber is valid below the first RD coincidence and in intervals around each
uncoupled PR coincidence. The coupled RD and coupled structural solutions can be patched together by an irregular
perturbation expansion around an RD coincidence obtained by a different rescaling of the variables. We do not present this
patching solution since this would make the document lengthy and it does not lead to any additional insights.
κ

Ω

Uncoupled rigid-duct cut-on waveno.
Uncoupled pressure-release cut-on waveno.
In vacuo structural waveno.

S = 0

R = 0 PR = 0

PR
coincidence

RD
coincidence

Fig. 3. Schematic of uncoupled wavenumbers.
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In the schematic figure (Fig. 4), Section 1 corresponds to the low-frequency coupled structural wavenumber. Section 2
represents the high-frequency coupled structural wavenumber. This solution is also valid in an interval around each PR
coincidence. Section 3 represents the coupled RD cut-on wavenumber.

Also, the plane-wave perturbation solution corresponding to the limiting solution PW=0 has not been discussed here as
this is a trivial solution (the amplitude of the pressure wave is uniformly zero inside the cylindrical cavity) for nZ2.

Coupled rigid-duct cut-on wavenumber: We start with the coupled dispersion relation as shown in Eq. (20). A regular
perturbation approach is chosen without a frequency scaling. We choose an asymptotic expansion for k of the form
k¼ k0þma1þn2b1 and substitute this in the coupled dispersion relation. Simplifying this equation and balancing at orders
yields the solution presented below:

k¼ k0þm
O6c4z2

0

k0ðn2�z2
0Þ½b

2
ðk2

0þn2Þ
4
þk4

0�O
2
ðk2

0þn2Þ
2
�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Su

,
(22)

where z0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2O2
�k2

0

q
and k0 is given by the solution of Jnuð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2O2
�k2

0

q
Þ ¼ 0. As expected, the leading-order term in this

solution is that given by R=0 in the coupled dispersion relation. From the asymptotic expression (Eq. (22)), it can be seen
that the correction term corresponding to n2 goes to zero. This can be explained by the fact that n is a structural parameter.
Thus, the effect of the coupling of motions of the shell in different directions due to Poisson’s effect on the dominantly
acoustic coupled RD cut-on wavenumber can be expected to be seen only at a higher order.

The denominator of the correction term corresponding to m contains the factor k0. Thus, when k0 ¼ 0, i.e., at the
uncoupled RD cut-on frequency, this asymptotic expression breaks down. Another factor of the denominator is Su which is
equal to S as defined in the coupled dispersion relation (Eq. (5)) after setting n¼ 0. When Su¼ 0, we get the uncoupled RD
coincidence frequency which is correct to Oðn2Þ. Thus, Eq. (22) breaks down as we approach the uncoupled RD coincidence
frequency. Alternative valid expansions can be found for both the above frequency regimes. Note that the coupled cut-on
frequency is higher than the corresponding uncoupled one.

Fig. 5 presents the asymptotic solution obtained above plotted against the numerical solutions of the coupled dispersion
equation (Eq. (20)) for various n. The match between the curves is seen to be good. As an added check, these solutions have
been compared with the numerical solution of the dispersion equation for a fluid-filled shell as obtained by using the
DM(ff) theory [1–3,25]. This solution again matches well with the solutions of the shallow-shell equation, validating the
use of this shell theory. The results presented in this section are for a shell with h/a=0.05, i.e., b¼ 0:0144.

Coupled structural wavenumber: The coupled structural solution is expected to be a perturbation on the in vacuo

structural solution given by S=0 in Eq. (20). For simplicity of the final solution and convenience of interpretation, we find
an asymptotic solution which uses three asymptotic expansion parameters, namely m, the fluid-loading parameter defined
earlier, a frequency-scaling parameter, e, which is actually a fictitious parameter and does not appear in the final solution,
and n Poisson’s ratio.
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Following Section 2.2 (as in Eq. (6)), we start with a high-frequency transformation to rescale k and O. We then let
krs ¼ k0þma1þeb1þn2c1, where e as said above is the frequency-scaling parameter. However, the form of the dispersion
equation so obtained is complicated and poses some problems while working with the symbolic Math package MAPLE
which was used in getting all the results. For this reason, we use a novel method to circumvent this problem.

Here, we start with a regular perturbation approach in one asymptotic expansion variable m, i.e., k¼ k0þmk1.
Substituting in Eq. (20), at Oð1Þ, we have

b2k8
0þ4b2n2k6

0þð�O
2
þ6b2n4�n2þn2O2

þ1Þk4
0

þ � � � ð4b2n6þ2n2O2n2�2O2n2Þk2
0þb

2n8þn2O2n4�O2n4 ¼ 0: (23)

This equation cannot be easily solved to give closed-form expressions for k0. To solve this equation we now apply the
high-frequency transformation (Eq. (6)) for the variables O and k0. The assumption implicit in this step is that k0 is
the dominant term in the expression for k which is a property of asymptotic series in general. Thus, instead of applying the
frequency-scaling to the original variable k, we apply the transformation to the leading-order term in the expansion. As we
show later, the validity of this assumption is proven by our results. Using this method we solve the modified equation at
Oð1Þ by expanding k0 using two asymptotic expansion variables, e and n2, and the solution for k0 is obtained as

k0 ðrescaledÞ ¼

ffiffiffiffiffiffiffi
Ors

b

s
�e1

2
n2

ffiffiffiffiffiffiffi
b
Ors

s
�

1

4
n2

ffiffiffiffiffiffiffi
Ors

b

s
,

k0 ðoriginal variablesÞ ¼

ffiffiffiffi
O
b

s
�

1

2
n2

ffiffiffiffi
b
O

r
�

1

4
n2

ffiffiffiffi
O
b

s
: (24)

This is the same as Eq. (8) (high-frequency in vacuo structural wavenumber) and hence this method is validated. This
solution is now substituted in the OðmÞ equation which gives the correction terms corresponding to m as a function of k0.
The final solution is as follows:

k¼ k0�
1

4
m O6c4Jnðz0Þð�1þn2Þ

k0z0Jnuðz0Þf2b
2k6

0þ6b2n2k4
0þð�O

2
þ6b2n4�n2þn2O2

þ1Þk2
0þn2O2n2þ2b2n6�O2n2g

" #
, (25)

where z0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2O2
�k2

0

q
as in Eq. (22).

It can be readily observed from the above expression that the factor Jnuðz0Þ appears in the denominator of the correction
term. This is the term R as defined in the coupled dispersion relation (Eq. (20)). Thus, as the frequency approaches the
uncoupled RD coincidence frequency, R¼ 0 and this asymptotic expansion breaks down. Also, the numerator of the
correction term contains the factor Jnðz0Þ. This is the term PR as defined earlier (Eq. (21)). This term is zero at the PR
coincidence frequency and the uncoupled and coupled structural wavenumbers coincide at this frequency.

Looking at the form of the equation after substituting for k0, we see that the expression obtained is equivalent to a
three-variable expansion in m, n2 and e. The coefficient of m contains e and n2 implicitly through the solution for k0 and can
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be said to contain the higher-order terms in e and n2 as well. A similar approach is also followed for the low-frequency
region using the transformation given in Eq. (9). The correction term remains the same as in Eq. (25). The solution for k0

however is now obtained as follows:

k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n4b2

þO24

q
n�

1

2

nð�O2
þ2n4b2

Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n4b2

þO24

q �n2 1

4

b2n5

ð�n4b2
þO2
Þ
3=4

: (26)

Again, this low-frequency solution for k0 is the same as that obtained in Eq. (11). We have compared these results against a
full numerical solution of Eq. (20) and the DM(ff) theory as given by [1] to test the applicability of this method, as the use of
such an approach has not come to our notice in the literature. The plots for the low-frequency region are as shown in Fig. 6
and the high frequency plots for a frequency just below the first coincidence are shown in Fig. 7.
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Since in the uncoupled RD coincidence region the coupled RD cut-on wavenumber blows up as discussed earlier, the
appropriate solution is the coupled structural solution (Section 2 in the low-m schematic (Fig. 4)). This solution is compared
with the numerical solution and the DM(ff) theory in Fig. 8. The coupled structural solution patches the coupled rigid
duct solutions on either side of the coincidence. This implies that in this region the nature of the wave transitions
from being dominantly acoustic to being dominantly flexural and back to dominantly acoustic. This solution at the
uncoupled PR coincidence region (the coupled structural wavenumber) gets more accurate for higher frequencies as shown
in Fig. 9. The match between the asymptotic expansion and the numerical solution may appear to be questionable but this
is a visual effect. This is due to consecutive uncoupled PR coincidence frequencies for a given n being densely clustered,
resulting in the asymptotic solution breaking down for a frequency which is not very far from the uncoupled PR
coincidence frequency.
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3.3.2. Case II: large m
In this case, as shown from Eq. (21), after replacing m by 1=Z, with Z51 being the asymptotic expansion parameter,

there is only one limiting solution corresponding to PR=0, i.e., the uncoupled pressure-release cut-on wavenumber
solution. Thus, in the presence of fluid–structure coupling, we look for coupled solutions which are a perturbation on
this solution.

Fig. 10 shows the schematic of the final results (presented here for clarity). Here, the perturbed PR solution can be seen
along with the in vacuo structural wavenumber (S=0), the first uncoupled rigid-duct cut-on (R=0) and the first uncoupled
pressure-release cut-on (PR=0). Following the steps shown in the small m case and in [15,16], we use the coupled
dispersion relation (Eq. (19)) rewritten in terms of Z (different from the frequency-scaling variable used in the case of the
coupled structural wavenumber, Eq. (21)) and follow a regular perturbation approach in the unscaled variables. Choosing
an asymptotic solution for k of the form k¼ k0þZa1þn2b1 and balancing at orders we obtain closed-form solutions for the
leading-order term and the correction terms at Oð1Þ and OðZÞ,Oðn2Þ, respectively. As expected, the leading-order solution is
the same as that obtained from the uncoupled solution for a pressure-release duct as in the second of Eq. (2). The whole
solution is given by

k¼ k0þ
1

m
z2

0½�ðk2
0þn2Þ

4b2
þO2
ðk2

0þn2Þ
2
�k4

0�

O6c4k0

, (27)

where z0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2O2
�k2

0

q
and k0 is found by solving Jnð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2O2
�k2

0

q
Þ ¼ 0. Again, the correction term corresponding to n2 is zero

as in the case of the coupled RD cut-on wavenumber for similar reasons, i.e., the effect of Poisson’s ratio is a dominantly
structural effect and can be expected to appear only at higher orders in the expression for the dominantly acoustic coupled
PR wavenumber.

This solution can be seen to become invalid at the uncoupled PR cut-on frequency since k0 takes the value zero at this
point. Additionally, it is seen that one of the factors of the numerator of the correction term in this expansion corresponds
to the term S defined in the coupled dispersion relation (Eq. (20)). Thus, at the uncoupled PR coincidence frequency, S=0
and the correction term is zero, i.e., the uncoupled and coupled PR wavenumbers coincide.

This solution is compared against a numerical solution obtained through a continuation approach as described earlier in this
paper. The match is seen to be very good for all the branches (Fig. 11) (Refer Fig. 10 for the schematic). Again, invoking a
continuity argument it is seen from the schematic that by progressively increasing the magnitude of the fluid-loading term m,
the coupled rigid-duct cut-on solution obtained earlier in the case for m51 transitions continuously to the solution described
above for mb1 and the coupled pressure-release cut-on frequency is now lower than the corresponding uncoupled one. This
step brings out the true utility of asymptotic methods in comparison with a numerical solution. Additionally, it is seen that in
the presence of fluid–structure coupling, the intersection of the uncoupled wavenumber solutions at the coincidence
frequencies is avoided and results in a gap being formed. This phenomenon has been observed earlier in asymptotic [15–17] as
well as numerical studies [1–3,28]. This fact is reflected more clearly in the schematic figure (Fig. 13) where the arrows show
the direction of movement of the dispersion curves with increasing values of m. From Fig. 11 it can be seen that the uncoupled
and the coupled PR cut-on wavenumbers are very closely spaced. However, for a given O, the coupled PR cut-on wavenumber is
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Fig. 10. Schematic of coupled wavenumbers, large m case.
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higher in magnitude than the corresponding uncoupled one below the uncoupled PR coincidence frequency and vice versa. The
results presented here correspond to a shell with h/a=0.05, i.e., b¼ 0:0144.

Fig. 12 shows the asymptotic solutions in the coincidence region for small and large m (n=10) along with the numerical
solution for clarity. The curves for the numerical solution of the DM(ff) theory are not shown here so that the figure does
not appear cluttered. However, it has been verified that the numerical solutions for the SST and the DM theory coincide as
shown in the other figures.
4. Universal curves

In this section, we study the results obtained thus far in a different fashion, i.e., by the use of constant-frequency loci.
These curves are produced by generating a contour plot for the dispersion equation with the circumferential wavenumber
on the x-axis and the axial (bending)-wavenumber on the y-axis. The contours are plotted for different frequency values.
Universal curves or constant-frequency loci are a particularly insightful way of showing the effect of the curvature in the
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shell by separating the membrane and the bending effects [21]. The universal curves for the in vacuo plate are circular arcs
whereas for shells they get distorted due to the membrane effects. The difference between plates and shells is shown
through the constant-frequency loci in [21]. Here, we take a step forward and use this visualization to also compare the
coupled dispersion curves of the fluid-filled shell with that of the in vacuo shell.

4.1. The in vacuo shell

The universal curves for the in vacuo shell are from Eq. (5) with n¼ 0 as used by Fahy [21] and are as shown in Fig. 14. As
has been shown in the earlier sections, the effect of Poisson’s ratio is of Oðn2Þ and can be neglected without affecting the
accuracy of the results. On the x-axis, the circumferential wavenumber is represented by n

ffiffiffi
b

p
and on the y-axis, the axial

wavenumber is represented by k
ffiffiffi
b

p
. The deviation from the in vacuo plate is in the form of veering of the loci towards the

origin and is due to the membrane effect. This effect is predominant below the ring frequency. Above the ring frequency,
the membrane effects are less pronounced since the wavelength of the circumferential waves is much smaller than the
radius of curvature of the shell. As a result, in this region the dynamics of the in vacuo shell are similar to that of the in

vacuo plate and hence the shell curves are almost coincident with the plate curves. This case has been discussed in the
literature (see [21, p. 104]) and the curves presented in this sub-section are a reproduction of the results obtained earlier.

4.2. Fluid-filled shell

In this sub-section, we study the effect of fluid–structure coupling on the membrane and bending effects in the shell
behaviour through universal constant-frequency loci. In this section as well, we present our results in the manner followed
by Fahy [21] in order to highlight the effect of fluid–structure coupling. To this end, we carry over the same simplifications
from the previous sub-section, i.e., n is set to zero as its effect has already been shown to be of Oðn2Þ. Since we are
interested in the effect of coupling on the structural wavenumber, we ensure the frequency ranges are chosen so as to only
include the coupled structural wavenumber and not the coupled acoustic-duct cut-ons. As has been evidenced by the
nature of the asymptotic results obtained and the discussion on MAE, the overall behaviour of the shell is given by patching
together the coupled rigid-duct cut-on wavenumber (dominantly acoustic wavenumber) and the coupled structural
wavenumber (dominantly structural wavenumber). However, due to the densely clustered nature of the coincidences, the
intervals about the coincidence frequencies where the coupled wavenumber is dominantly structural are quite small. As a
result, picking points manually in this region (since we are interested in the structural effects) is more prone to error and so
we have restricted ourselves to picking points below the first coincidence.
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These results are shown superimposed on a plot containing the constant-frequency loci curves for an equivalent in

vacuo shell and an equivalent in vacuo plate (a plate made of the same material and having the same thickness). As
mentioned earlier, since we are only interested in the coupled structural wavenumber, this analysis is restricted to the case
where m51. From Fig. 15, it is seen that for O¼ 7211, the constant frequency loci for the coupled shell fall between the
corresponding loci for the in vacuo shell and the in vacuo plate. That is to say, the effect of coupling is to reduce the effect of
curvature. This effect can be explained mathematically by considering the governing equation. Rewriting Eq. (20) here for
convenience,

k4

ðn2þk2Þ
2|fflfflfflfflfflffl{zfflfflfflfflfflffl}

C

þ
b2

1�n2
ðn2þk2Þ

2
�O2
�

m
ðn2þk2Þ

2

O6c4JnðzÞ
zJnuðzÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

F

¼ 0: (28)

Here, C is the term which produces the curvature effect while F is the fluid-loading term. Setting both these terms to 0 gives
back the equivalent plate equation. For a choice of parameters such that C and F are both positive, it is readily seen that F

and C have contradictory effects. Since ðC�FÞoC for C4F, the fluid-filled shell curve is a smaller deviation from the in

vacuo plate curve as compared to the in vacuo shell, i.e., coupling reduces the effect of curvature for these parameter values.
For higher values of O (see Fig. 16), the fluid-loaded shell curves cross the in vacuo plate curves. The sign of the (C�F)

term decides the position of the universal curve for the fluid-loaded shell with reference to the in vacuo plate. A schematic
of the universal curves is shown in Fig. 17. Crighton in [7] has shown that below coincidence, an infinite 1-D plate loaded
by a fluid half-space has its real wavenumber increased due to the fluid-loading. Thus, the universal curves for the fluid-
loaded plate are above the in vacuo plate. And one can also see that a shell filled with a fluid approaches a fluid-loaded plate
in the limit with increasing radius and frequency. Thus, the fluid-filled shell universal curves cross the in vacuo plate curves
to reach the above limiting case.

5. Conclusions

In this article, we obtain analytical expressions for the coupled wavenumbers in an infinite fluid-filled flexible
cylindrical shell modelled using the shallow shell theory (SST). In contrast to the existing literature on the subject where
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typically numerical methods have been used, we use asymptotics to solve the relevant dispersion equation and present the
wavenumber expressions. The use of the SST allows us to present the asymptotic formulae in which n, the circumferential
mode number appears as a parameter. As a result, a single asymptotic expansion is now valid for all n which is a novel
contribution of this work.

Initially, we present asymptotic expressions for the in vacuo structural wavenumber in the low and high frequency
regions after employing a variable-rescaling approach. These are plotted against numerical solutions to the original in

vacuo dispersion equation. For the high frequency expansions it is seen that the asymptotic match for a given n is better as
the frequency increases.

In the coupled case, we present expressions separately for the small m and the large m case. For the small m case, the
solutions are perturbations on the in vacuo structural wavenumber and the uncoupled acoustic rigid-duct cut-on. The
regular expansion for the coupled structural wavenumber becomes invalid (blows up) at the rigid-duct coincidences but
remains finite around the pressure release coincidences. Exactly at the pressure-release coincidence, the correction term in
this expansion is zero so that the in vacuo structural wavenumber and the coupled structural wavenumber are equal here.
The regular expansion for the coupled rigid duct cut-on becomes invalid at the rigid duct coincidences, where an
alternative expansion can be found. Thus, a coupled rigid duct cut-on transitions into the coupled structural wavenumber
passing through the pressure release coincidence and back to the next coupled rigid duct cut-on. This way the full coupled
branch remains continuous despite individual expansions becoming invalid. An outcome of this patching of solutions is
that the coupled wavenumbers do not intersect anymore, a gap is created where earlier their uncoupled counterparts
intersected. Comparisons of the above expansions with numerical solutions show a good match, specially at higher
frequencies.

For the large m case, we again present an asymptotic solution to the coupled dispersion equation which is a perturbation
on the uncoupled pressure-release cut-on. The solution thus obtained is seen to be valid for all frequencies (except at the
pressure release cut-on frequency). This solution is compared with the numerical solution of the dispersion relation and
the match is seen to be good over the entire frequency range.

Further, all the asymptotic results obtained using the SST in this article have also been compared with numerical
solutions of the dispersion relation obtained by using a more general theory, namely, the Donnell–Mushtari theory which
is a commonly used thin shell theory. The match with these solutions is also very good, validating the use of the SST to
model the shell behaviour and the use of asymptotic methods to solve for the wavenumbers.

It is found that in comparison to the uncoupled case, the coupled rigid duct cut-on frequency is raised, whereas the
coupled pressure release cut-on frequency is lowered. The transition of solutions from small m to large m has also been
shown, again by invoking a continuity argument.

In each of the above cases, the effect of Poisson’s ratio n has been included in our calculations; n2 is also used as an
expansion variable while finding the asymptotic solution for the wavenumber. Thus, the effect of n is of Oðn2Þ or higher. In
the uncoupled and coupled structural wavenumbers, the effect of Poisson’s ratio is seen at Oðn2Þ, implying that the effects
of Poisson’s ratio and the fluid-coupling are of comparable orders. However, in the case of the coupled acoustic
wavenumbers, the coefficient of n2 was seen to be uniformly zero. Thus, the effect of the fluid–structure interaction is a
more dominant effect and the effect of n will be seen only at higher orders.

Finally, we present the solutions in the form of universal constant-frequency loci. Here, we compare the universal
curves for the in vacuo and the coupled small m cases. The constant frequency loci for the coupled shell fall between the
corresponding loci for the in vacuo shell and the in vacuo plate. The effect of coupling is thus to reduce the effect of
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curvature. However, for higher values of O (see Fig. 16), the fluid-loaded shell curves cross the in vacuo plate curves. This
happens because the fluid-filled shell wavenumbers tend to approach those of a plate loaded by a half-space of fluid.
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